skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Konopka, U"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Complex plasma is a state of soft matter where micrometer-sized particles are immersed in a weakly ionized gas. The particles acquire negative charges of the order of several thousand elementary charges in the plasma, and they can form gaseous, liquid and crystalline states. Direct optical observation of individual particles allows to study their dynamics on the kinetic level even in large many-particle systems. Gravity is the dominant force in ground-based experiments, restricting the research to vertically compressed, inhomogeneous clouds, or two-dimensional systems, and masking dynamical processes mediated by weaker forces. An environment with reduced gravity, such as provided on the International Space Station (ISS), is therefore essential to overcome this limitations. We will present the research goals for the next generation complex plasma facility COMPACT to be operated onboard the ISS. COMPACT is envisaged as an international multi-purpose and multi-user facility that gives access to the full three-dimensional kinetic properties of the particles. 
    more » « less
  2. Dusty plasmas are electrically quasi-neutral media that, along with electrons, ions, neutral gas, radiation, and electric and/or magnetic fields, also contain solid or liquid particles with sizes ranging from a few nanometers to a few micrometers. These media can be found in many natural environments as well as in various laboratory setups and industrial applications. As a separate branch of plasma physics, the field of dusty plasma physics was born in the beginning of 1990s at the intersection of the interests of the communities investigating astrophysical and technological plasmas. An additional boost to the development of the field was given by the discovery of plasma crystals leading to a series of microgravity experiments of which the purpose was to investigate generic phenomena in condensed matter physics using strongly coupled complex (dusty) plasmas as model systems. Finally, the field has gained an increasing amount of attention due to its inevitable connection to the development of novel applications ranging from the synthesis of functional nanoparticles to nuclear fusion and from particle sensing and diagnostics to nano-contamination control. The purpose of the present perspectives paper is to identify promising new developments and research directions for the field. As such, dusty plasmas are considered in their entire variety: from classical low-pressure noble-gas dusty discharges to atmospheric pressure plasmas with aerosols and from rarefied astrophysical plasmas to dense plasmas in nuclear fusion devices. Both fundamental and application aspects are covered. 
    more » « less
  3. In this paper, we give a detailed description of a novel plasma chamber—the Zyflex chamber—that has been specifically designed for complex/dusty plasma research under reduced gravitational influence as realized during parabolic flight or aboard the International Space Station. The cylindrical, radio-frequency driven discharge device includes a variety of innovations that, for example, allow us to flexibly adjust plasma parameters and its volume via enhanced plasma generation control and a movable, multi-segmented electrode system. The new complex/dusty plasma research tool also supports, due to its overall increased size compared to former space based complex plasma experiments such as PKE-Nefedov or PK-3 Plus, much larger particle systems. Additionally, it can be operated at much lower neutral gas pressures, thus reducing the damping of particle motion considerably. Beyond the technical description and particle-in-cell simulation based characterization of the plasma vessel, we show sample results from experiments performed with this device in the laboratory as well as during parabolic flights, both of which clearly demonstrate the new quality of complex/dusty plasma research that becomes accessible with this new plasma device. 
    more » « less
  4. null (Ed.)